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1 Introduction

Transgene technology has bestowed the most benefits on 
enhancing crop productivity, and no direct safety hazard 
has been reported from any GMOs (Teferra 2021). How-
ever, controversial concerns over GMOs and their products 
regarding consumer safety and environmental sustainability 
remain unchanged after a worldwide rapid and vast adop-
tion for the last 2 decades (Teferra 2021). Governments 
have established the strictest testing measures to fulfill 
effective regulatory compliance requirements (Davison and 
Ammann 2017; Hartung and Schaub 2018). For instance, 
the European Union, Korea, and Japan have issued labeling 
regulations to monitor GMO events with specific threshold 
values of 0.9%, 3%, and 5%, respectively (Fraiture et al. 
2015; Zhang and Guo 2011). In addition, many detection 
methods have been developed for identifying event traits, 
assessing risk, post-release monitoring of new GM events, 
and addressing consumer concerns and legal disputes. Most 
of the methods are based on the techniques of nucleic acid, 
including PCR (Li et al. 2011), real-time PCR (Takabatake 
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DBN9501 is a new maize transgenic event characterised by being resistance to insects and herbicides. To meet genetically 
modified (GM)-labeling requirements and monitor the unintended release of genetically modified organisms (GMOs), 
developing a creditable and applicable method for identifying and quantifying GM events is essential. Herein we devel-
oped an event-specific method and validated it through inter-laboratory ring trials using blind samples. The limit of detec-
tion (LOD) and limit of quantification (LOQ) of copy number ratio were confirmed at 0.05% and 0.1%, respectively. 
The quantitative bias ranged from  -3.52 to 10.38%, and the relative standard deviation (RSD) of the method was < 25%. 
Furthermore, the expanded uncertainty for the blind samples S1 − S5 was 0.22%, 0.10%, 0.05%, 0.03%, and 0.02%. 
These results demonstrated that the event-specific quantitative PCR method could identify and quantify GM DBN9501 
for further routine lab analysis.
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et al. 2016; Yang et al. 2007), micro-droplet PCR imple-
mented capillary gel electrophoresis (MPIC) (Guo et al. 
2011), loop-mediated isothermal amplification (LAMP) 
(Singh et al. 2019), microarray (Turkec et al. 2016), and 
CRISPR-associated method (Huang et al. 2020). Because 
of the high degree of accuracy, sensitivity, and specificity, 
real-time (RT) PCR is the gold standard for identifying and 
quantifying GMOs in crops and food products (Wei et al. 
2016), such as the significant commercialized GM events 
of maize (Long et al. 2021), canola (Akiyama et al. 2010), 
soybean (Charles et al. 2013), cotton (Savini et al. 2009), 
and rice (Mazzara et al. 2013).

An inter-laboratory collaborative study has already 
developed and validated RT-PCR-based event-specific 
quantitative methods (Scholtens et al. 2017). For instance, 
11 laboratories from 3 countries participated in the linseed 
event CDC Triffid FP967 (Grohmann et al. 2011), 11 labo-
ratories from China collaborated in the ring trial of Huanong 
No.1 GM papaya (Wei et al. 2016), so as the soybean 
(Grohmann et al. 2017; Kodama et al. 2011), rice (Grohm-
ann et al. 2015), and tomato (Yang et al. 2008). Many RT-
PCR methods of different GM events have been validated 
through the collaborative inter-laboratory ring trial and used 
as standards of the international standard organization (ISO 
21569 2005; ISO 21,570 2005; ISO 24276 2006). More-
over, inter-laboratory ring trials are recommended for rou-
tine GMO analysis (ENGL 2015; ENGL 2017) to confirm 
that the detection methods fit for purpose and are transfer-
able to multiple laboratories.

Maize, one of the most commercialized biotechnological 
crops, was popularized through compound traits, especially 
herbicide and insect resistance. The lepidopteran insects, 
such as Agrotis Ypsilon, cotton bollworm, and Spodoptera 
litura, seriously destroyed maize and other crops. Mean-
while, the herbicide glufosinate is a widely used resistant 
trait of GM crops worldwide (Lean 2011; Shwe et al. 2020). 
DBN9501 is a new maize event resistant to lepidopteran 
insects and herbicide glufosinate. It is likely to appear 
soon on the market, since it has been approved for use in 
food and feed in China, like DBN9936 (Li et al. 2022) and 
DBN9858 (Kang et al. 2016). However, no event-specific 
method has been developed for DBN9501 and its deriva-
tives. This research aimed to provide a method and techni-
cal support for routing analysis and implementation. In this 
study, we established the event-specific method for detect-
ing DBN9501 and successfully validated the applicability 
and suitability of the method.

2 Materials and methods

2.1 Plant material

DBN9501, recipient maize variety, and all GM materials, 
including the GM event mixed samples were provided by 
the Development Center of Science and Technology, Minis-
try of Agriculture and Rural Affairs of the People’s Repub-
lic of China, were preserved in the laboratory. The 6 mixed 
samples were:

 – 14 GM maize events without DBN9501 (Bt11, Bt176, 
MON810, MON863, GA21, NK603, T25, TC1507, 
MON89034, 59122, MIR604, MON88017, 3272, and 
MON87460);

 – 5 GM rice events (Kefeng6, Kefeng8, KMD, M12, and 
TT51);

 – 7 GM soybean events (356043, 305423, CV127, 
MON89788, A5547-127, A2704-12, and GTS40-3-2);

 – 5 GM cotton events (MON1445, MON531, MON15985, 
LLCOTTON25, and MON88913);

 – 8 GM rape events (MS1, MS8, RF1, RF2, RF3, T45, 
Oxy235, and Topas19/2);

 – Non-GM maize mixed samples. Each event contained 
1% (w/w) content levels in these GM mixed samples. 
The amount of DNA from the mixed samples was 50 ng 
per PCR reaction.

2.2 DNA extraction and purification

Total genomic DNA of all the samples were extracted and 
purified from leaves by the CTAB extraction according to 
ISO 21570 (2005). The quality of DNA was estimated by 
agarose gel electrophoresis and the ultraviolet spectromet-
ric method using a NanoDrop 2000 UV/vis spectropho-
tometer (NanoDrop, Wilmington, DE, USA), according 
to ISO 21571 (2005). Subsequently, DNA concentrations 
were measured using the Qubit™ dsDNA BR Assay Kits 
in a Qubit® 2.0 Fluorometer (Invitrogen, Thermofisher, 
MA, USA). Finally, the concentration of DNA samples was 
adjusted to 50 ng/µL for further experiment analysis.

2.3 Blind sample preparation

Blind samples were directly prepared first by adjusting the 
DNA concentration to 50 ng/µL with a 0.1×TE solution. 
Second, DNA of the non-GM transformant and GM were 
mixed with the ratio of 9:1 to obtain a sample with expected 
mass fractions of 10% (w/w). Finally, a serial dilution was 
performed with non-GM rice DNA to obtain respective cop-
ies number ratio of 5%, 2%, 1%, 0.5%, and 0.1% DBN9501. 
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Each sample was adjusted to 100 µL with the concentration 
of 50 ng/µL for further application.

2.4 Primer and probes

The sequence information of the exogenous vector insert 
fragment in DBN9501 was provided by Beijing DaBei-
Nong Biotechnology Co., Ltd. Primer and probes of the 
event-specific PCR were designed according to the 3’ flank-
ing sequences. The 5’ and 3’ ends of the probe were labeled 
with 6-carboxyfluorescein (FAM) and Black Hole Quencher 
1 (BHQ1), respectively. The probe of the maize reference 
gene zSSIIb (Yang et al. 2005) was labeled with 5’-VIC and 
3’-BHQ. All primer and probes used for this research were 
synthesized by Thermo Fisher Scientific (Table 1).

2.5 Real-time PCR

RT- PCR reactions took place in a fluorometric thermal 
cycler (ABI7500 USA), in a volume of 25 µL, including 
1×iTaq universal probes supermax mix, 400 nM for each 
primer and probe, and 50 ng genomic DNA, unless oth-
erwise specified. Each reaction followed the program of a 
deactivation step at 95℃ for 5 min, followed by 40 cycles 
of 15 s at 95℃, 1 min at 60℃, and fluorescence measure-
ments after annealing and extension. Unless otherwise 
specified, each qPCR reaction was performed in triplicates 
and 3 parallels each. The negative and blank control used 
the recipient maize variety DNA and ddH2O as a template, 
respectively. Results were analyzed using the SDS Version 
1.3.1 (Applied Biosystems, Foster City, CA, USA).

2.6 Digital PCR

Digital PCR was carried out according to the manufactur-
er’s instructions (QuantStudio™ 3D digital PCR, Thermo 

Fisher). Briefly, the reaction was performed in 15 µL con-
taining 1 × 3D digital PCR Master Mix v2, 20 ng DNA, 
560 nM forward and reverse primers and 280 nM probe. 
Then, the mixture was loaded onto the chip automatically 
and sealed by Immersion Fluid. Next, the chip was ampli-
fied by QuantStudio™ 3D digital PCR with the amplification 
program: 96℃, pre-denaturation for 10 min; denaturation 
for 30 s at 98℃ and annealing for 2 min at 60℃ (40 cycles 
in total). Finally, the chip data was read by QuantStudio™ 
3D digital PCR and analyzed using Analysis Suite™ Cloud 
Software (QuantStudio™ 3D digital PCR, Thermo Fisher). 
No template reactions were prepared for quality control. All 
data were reported as the mean value of triplicates for each 
sample.

2.7 Inter-laboratory ring trials

The ring trial included 8 GMO detection laboratories (affili-
ated with the Ministry of Agriculture and Rural Affairs, 
China). Each laboratory received 12 gDNA samples, includ-
ing a positive and a negative control labeled DBN9501 and 
non-GM, 5 blind samples labeled S1, S2, S3, S4, and S5, 
and 5 samples labeled G1, G2, G3, G4, and G5, respec-
tively, for the standard curve. The blind sample S1 − S5 
solutions with respective copy number ratios of 5%, 2%, 
1%, 0.5%, and 0.1% were sequentially prepared by mixing 
the DNA solution of DBN9501 and non-GM maize using a 
gravimetric method (Li et al. 2022). G1 − G5 represented 
the genomic DNA of DBN9501 diluted by EASY Dilu-
tion (for RT-PCR) (Takara) with different copy numbers 
of endogenous gene zSSIIb (44453, 7409, 1235, 206, and 
34 copies) and DBN9501 (22226, 3704, 617, 103, and 17 
copies), respectively, in each reaction as calibrator to con-
struct the standard curves. The samples (G1 − G5, S1 − S5) 
were simultaneously amplified on each PCR plate for the 
DBN9501-specific and zSSIIb-specific assay. Each sample 
included 3 parallels, each in triplicates.

2.8 Data analysis

The participants were asked to record the cycle threshold 
(Ct) of the RT-PCR, and to send back their records within 
a specified time, in total 180 Ct values (2 genes×(5 calibra-
tors + 5 samples)×3 parallels×3 repeats = 180). Data were 
analyzed using Microsoft Excel and SPSS 22.0 software 
to determine the characteristics of the DBN9501-specific 
method. The PCR efficiency, linearity of regression, accu-
racy, repeatability, and reproducibility were calculated 
according to ISO 5725-2 (1994) and ISO 5725-3 (1994). 
Measurement uncertainty, LOD, and LOQ of the DBN9501 
were estimated based on the performance data provided 

Table 1 Primer and probe sequences
Target Primer/probe Sequence(5’-3’) Ampli-

con 
size 
(bp)

zSSIIb zSSIIb-3 F CGGTGGATGCTAAGGCT-
GATG

88

zSSIIb-4R AAAGGGCCAGGTTCAT-
TATCCTC

zSSIIb-Pa TAAGGAGCACTCGCCGC-
CGCATCTG

DBN9501 DBN9501-qF aacgtgactcccttaattctcc 96
DBN9501-qR ccggactactataccatttatagttaca
DBN9501-qPb ACTGAAGGCGGGAAAC-

GACAATCT
alabelled with 5’-VIC and 3’-Black Hole Quencher 1 (BHQ1)
blabelled with 5’-6-carboxy-fluorescein (FAM) and 3’-BHQ1
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performed with 6 replicates. As a result, each repeat of any 
one sample showed consistent results, expressed as either 
positive or negative (Table S1). It also indicated the robust-
ness of different real-time PCR cyclers since no specific 
difficulties or unusual observations were reported or identi-
fied evaluating the results. Given the widely used RT-PCR 
as a method for GMO detection (Gang et al. 2010; Yang 
et al. 2013) and its specificity (ENGL 2015), this RT-PCR 
method was confirmed to be specific to DBN9501 and no 
cross-reactivity with other GM events and non-GM maize 
cultivars.

Additionally, we tested the copy number of the DBN9501 
in triplicates on a digital PCR platform. The haploid genome 
size of maize was estimated 2,319 Mbp, corresponding to 
a weight of 2.5 pg (Arumuganathan et al. 1991). There-
fore, the copy number of the haploid maize genome was 
calculated by the weight of the maize DNA divided by 
2.5 pg. One ng DNA of maize contains about 400 copies 
of endogenous genes. We analyzed the copy number of the 
endogenous gene and DBN9501 specific fragment after 
we obtained the data from the digital PCR. Compared with 
the endogenous gene, the percentage of copy number of 
DBN9501 was 50%, which indicated that the DBN9501 
transformant was a heterozygote (Fig. S2). To testify the 
LOD value, the ring trials from 8 participants showed that 
the LOD of real-time PCR could reach 0.05%, and no false-
positive and false-negative result was found in the returned 
reports (Table S1). Since digital PCR is superior to real-time 
PCR in quantification (Teruaki et al. 2021), this result was 
more reliable. These results showed that the event-specific 
real-time PCR assay had high specificity and sensitivity to 
DBN9501, and we developed an event-specific detection 
method for DBN9501.

by the 8 participants, according to the guidance document 
(Trapmann et al. 2020).

3 Results and discussion

3.1 Development of an event-specific detection 
method for DBN9501

We designed event-specific primer and probes for RT-PCR 
using the 3’ junction sequence of DBN9501. Their specific-
ity was proved in silico through online databases (https://
blast.ncbi.nlm.nih.gov/; http://www.phytome.org/). After 
optimization of the specificity, annealing temperature, and 
reaction concentration by PCR, primer DBN9501-qF/R 
and the TaqMan probe DBN9501-qP were selected, yield-
ing a product of 96 bp, which confirmed the requirements 
of ISO, CRL-GMFF, and the labeling policies of most 
countries (ISO 21569 2005; ENGL 2015) (Table 1; Fig. 
S1). DBN9501-qF/P and DBN9501-qR were located in 
the inserted DNA sequence and the maize genome, respec-
tively (Fig. 1). Their specificity was confirmed and met the 
requirements of ENGL (ENGL 2015). The primer and probe 
of the endogenous reference gene zSSIIb (Table 1) was vali-
dated by Yang et al. (2005). To test the specificity of the 
primer and probe, we used mixed samples instead of indi-
vidual GM events and non-GM samples. Mixed samples 
can decrease the number of tested samples and costs with-
out compromising specificity (Wei et al. 2016). As a result, 
only DBN9501 showed amplification curves and Ct-values, 
but not the other 6 mixed samples using DBN9501-qF/R 
primer, while the amplicons of zSSIIb was detected in all 
maize samples (Fig. S1). Moreover, participants from 8 
laboratories confirmed this result using the mixed samples, 
DBN9501 (1% and 0.05%), positive and negative control 
by PCR instruments with 6 brands, and each sample was 

Fig. 1 Primer and probe design 
for event-specific PCR detec-
tion methods for DBN9501. The 
PCR product of GM-DBN9501 
included 65 bp T-DNA insert 
sequence (capital letter) and 
maize genome DNA sequence 
31 bp (lower case letter). The 
upstream and downstream 
sequences with blue under-
line were DBN9501-qF and 
DBN9501-qR, respectively. The 
probe was located on the T-DNA 
insert sequence and labeled with 
an orange frame
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3.3 Limits of detection and quantification

The LOD and LOQ are critical parameters that should be 
< 1/20 and 1/10 of the target concentration, respectively, 
according to Announcement No. 2259-5-2015 in China 
(MARA 2015). Moreover, the LOD should be < 25 copies 
with a confidence level of 95%, ensuring ≤ 5% false nega-
tive results (ENGL 2015). Considering the strictest labeling 
regulation of the European Union (0.9% threshold), we pro-
posed 1% as a reference value, since China has no threshold 
yet. To satisfied the requirement, we respectively performed 
the RT- PCR reactions with 60 parallels (1 repeat) with the 
concentration of DBN9501 at 0.1% and 0.05%. In both, 
0.1% and 0.05% levels of DBN9501, the typical amplifi-
cation curves could be detected in each parallel (Fig. S3). 
Simultaneously, the inter-laboratory ring trials obtained the 
same results with 6 parallel reactions (Table S1). Therefore, 
the LOD and LOQ for DBN9501 can reach 0.05% and 0.1% 
levels, respectively. The copy number of LOD of 0.05% 
equaled 50 ng×0.05%×400 = 10 copies, which also com-
plied with the request of fewer than 25 copies.

To verify whether 0.1% level suit for the LOQ, we per-
formed the RT-PCR using 15 transformants of DBN9501 
with a 0.1% concentration (Table S3). After calculating 
the copy ratios of DBN9501 and zSSIIb, we confirmed the 

3.2 PCR efficiency and linearity of qPCR

The participating laboratories provided the Ct values of the 
serial reference solutions (G1 − G5) without missing data 
(Table S2). We performed Cochran’s and Grubbs’ tests to 
check for outliers of estimated values according to ISO 
5725-2 (1994), and no outliers were found. Thus, we gener-
ated separate standard curves of the DBN9501 and zSSIIb 
assays by plotting the returned Ct values against the loga-
rithm of the copy number ranging from 44452.8 to 34.3. 
As a result, the mean slope of the standard curves of zSSIIb 
and DBN9501 was − 3.39 and − 3.38, respectively, between 
− 3.13 to -3.54. The mean regression coefficients (R2) were 
both 1.00 for the zSSIIb and DBN9501 (above the mini-
mum acceptable value of 0.98). The PCR efficiency (E) of 
zSSIIb and DBN9501 was calculated based on the formula 
E=(10− 1/slope−1)×100%, and the mean efficiencies were 
all not less than 97% (Table 2). The mean values of these 
parameters were all within the allowed range of the require-
ments for GMO analytical methods issued by the MPR 
document (ENGL 2015). Therefore, these results revealed 
that this detection method had good linearity and high PCR 
efficiency between Ct-values and copy numbers.

Table 2 The values of the slopes and the regression coefficients of DBN9501 and zSSIIb
Laboratory # zSSIIb DBN9501

slope Efficiency (%) R2 slope Efficiency (%) R2

1 -3.36 99 1.00 -3.13 109 1.00
-3.28 102 1.00 -3.14 108 1.00
-3.37 98 1.00 -3.18 107 1.00

2 -3.54 92 0.99 -3.45 95 0.98
-3.44 95 0.98 -3.48 91 0.99
-3.30 101 0.99 -3.29 101 0.98

3 -3.47 94 1.00 -3.51 93 1.00
-3.42 96 1.00 -3.38 98 0.99
-3.45 95 1.00 -3.53 92 1.00

4 -3.40 97 1.00 -3.29 102 1.00
-3.35 99 1.00 -3.34 99 1.00
-3.38 98 1.00 -3.37 98 1.00

5 -3.43 96 1.00 -3.47 94 1.00
-3.46 94 1.00 -3.54 91 1.00
-3.54 91 1.00 -3.54 92 1.00

6 -3.46 95 1.00 -3.40 97 1.00
-3.44 95 1.00 -3.46 94 1.00
-3.37 98 0.99 -3.43 96 0.99

7 -3.37 98 1.00 -3.36 98 1.00
-3.37 98 1.00 -3.38 98 1.00
-3.31 101 1.00 -3.41 97 0.99

8 -3.34 99 1.00 -3.37 98 1.00
-3.34 99 1.00 -3.31 100 1.00
-3.27 102 1.00 -3.28 102 1.00

Mean -3.39 97 1.00 -3.38 98 1.00
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and LOQ of the event-specific RT-PCR was approximately 
0.05% and 0.1% of the haploid genome.

3.4 Qualification of blind samples

Based on the handed-in Ct-values of the blind samples 
S1–S5 (Table S2), standard curves were constructed and 
calculated for the copy numbers of the DBN9501 genome 
(Fig. 2). For blind samples, the GM contents were deter-
mined by the formula GM% = GM copy number/maize 
genome copy number×100. The results in triplicates of each 
participating laboratory are listed in Table 3. The quanti-
fied GM DBN9501 content in S1–S5 samples (5%, 2%, 
1%, 0.5%, and 0.1%) were 4.82%, 1.98%, 0.99%, 0.51%, 
and 0.11%, respectively (Table 4). The quantitative bias 
for the 5 samples ranged from − 3.52 to 10.38% (Table 4), 
which is within the dynamic range according to the ENGL 
(2015) acceptance criterion (± 25%). These results show 

average percentage was 0.1%. Moreover, the mean bias and 
relative standard deviation (RSD) were 8.3% and 9.6%, 
respectively, compared with the original dilution concentra-
tion. Since the values of RSD were all < 25%, it suggested 
that the LOQ could reach 0.1%. Furthermore, the participants 
performed the RT-PCR with 0.1% DBN9501 in 3 parallels 
to verify the value of LOQ. The values of relative repeat-
ability standard deviation (RSDr) in laboratories was < 25% 
and ranged from 0.00 to 8.33%. Meanwhile, the relative 
reproducibility standard deviation (RSDR) among laborato-
ries was < 35% (7.83%, Table S4). For the stability of LOQ, 
the 0.1% level contained about 100 ng×0.1%×400 = 40 
copies of DBN9501. Therefore, the LOQ value of this stan-
dard method was 0.1%. Since the value of LOD or LOQ is 
not lower than 10 copies, so we did not need to estimate the 
probability of a positive PCR response for the targeted DNA 
sequence, known as the probability of the detection (POD) 
(Grohmann et al. 2015). Thus, we concluded that the LOD 

Fig. 2 Standard curves of DBN9501 and zSSIIb for the event-specific qPCR using gradient-diluted DBN9501 genomic DNA as the template. The 
standard curves of DBN9501 (a-c) and zSSIIb (d-f) in triplicates
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ranging from  -18.02 to 17.65% (Fig. 3). The bias ranged 
from − -3.52 to 10.38%, which is < 25%. Intra- and inter-
laboratory variation were separately characterized by RSDr 
and RSDR for each sample according to ISO5725-2 (Table 
S5 and Table 4). The RSDr values for sample S1, S2, S3, 
S4, and S5 were 4.27%, 3.72%, 4.83%, 6.66%, and 4.54%, 
respectively. All RSDr values were < 25%. The RSDR val-
ues were < 35% (2.86–7.83%) (Table 4). These results 
illustrated that the real-time PCR method was creditable in 
practical sample quantification.

that the established RT-PCR assay is suitable for quantify-
ing DBN9501.

3.5 Accuracy

Based on the slope of the standard curve derived from the 
DBN9501 genomic DNA dilution series (G1 − G5), this 
event-specific quantitative system had almost 100% effi-
ciency (Fig. 2). The relative deviation of the true value for 
blind samples was mainly positive for most participants, 

Table 3 GM DBN9501 content in blind samples from 8 laboratories
Sample GMO content
(GM% =GM copy number/maize genome copy number×100)
Laboratory # Replicates S1 S2 S3 S4 S5
1 Rep1 4.77 1.87 0.92 0.49 0.10

Rep2 4.97 1.96 0.95 0.48 0.09
Rep3 5.11 1.97 1.07 0.51 0.10

2 Rep1 5.13 2.16 1.14 0.56 0.12
Rep2 4.95 2.21 1.03 0.57 0.12
Rep3 4.18 1.82 0.87 0.39 0.10

3 Rep1 5.51 2.00 1.15 0.55 0.12
Rep2 4.48 1.96 1.14 0.48 0.12
Rep3 5.36 2.08 1.15 0.56 0.11

4 Rep1 4.47 1.81 0.91 0.45 0.12
Rep2 4.31 1.82 0.89 0.47 0.11
Rep3 4.69 2.00 1.02 0.49 0.13

5 Rep1 4.45 1.85 0.95 0.48 0.12
Rep2 4.71 2.09 0.82 0.62 0.12
Rep3 4.69 1.86 0.90 0.52 0.12

6 Rep1 5.01 2.01 0.96 0.50 0.11
Rep2 5.04 1.91 1.04 0.51 0.09
Rep3 4.84 1.98 0.98 0.54 0.11

7 Rep1 4.94 1.96 0.99 0.51 0.10
Rep2 5.01 2.03 1.00 0.50 0.10
Rep3 4.99 1.99 1.04 0.55 0.10

8 Rep1 5.08 1.99 1.00 0.52 0.11
Rep2 4.57 2.12 0.98 0.48 0.12
Rep3 4.52 1.97 0.93 0.45 0.11

Table 4 Summary of validation results from collaborative trials results
Blind samples Expected value

5% 2% 1% 0.5% 0.1%
Laboratories that 
returned results

8 8 8 8 8

Samples per 
laboratory

5 5 5 5 5

Number of outlies 0 0 0 0 0
Mean value 4.82% 1.98% 0.99% 0.51% 0.11%
Relative repeatability 
standard deviation, 
RSDr

4.27% 3.72% 4.83% 6.66% 4.54%

Relative reproduc-
ibility standard 
deviation, RSDR

4.11% 2.86% 6.98% 4.40% 7.83%

Bias -3.52% -1.21% -0.71% 1.50% 10.38%
Fig. 3 The relative deviation of the quantification results of blind sam-
ples from 8 laboratories
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guidance projects (GZ20210144), Natural Science Foundation of Hei-
longjiang Province (YQ2022C032), Scientific and Technological In-
novation 2030 Agenda (2022ZD040190803).
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